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Persisting roughness when deposition stops
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Useful theories for growth of surfaces under random deposition of material have been developed by several
authors. The simplest theory is that introduced by Edwards and Wilki(ia6, which is linear and soluble.
Its nonlinear generalization by Kardar, Parisi, and Zh@ig2) resulted in many subsequent studies. Yet both
EW and KPZ theories contain an unphysical feature. When deposition of material is stopped, both theories
predict that as time tends to infinity, the surface becomes flat. In fact, of course, the final surface is not flat, but
simply has no gradients larger than the gradient related to the angle of repose. We modify the EW and KPZ
theories to accommodate this feature and study the consequences for the simpler system which is a modifica-
tion of the EW equation. In spite of the fact that the equation describing the evolution of the surface is not
linear, we find that the steady state in the presence of noise is not very different in the long-wavelength limit
from that of the linear EW equation. The situation is quite different from that of EW when deposition stops.
Initially there is still some rearrangement of the surface, but that stops as everywhere on the surface the
gradient is less than that related to the angle of repose. The most interesting feature observed after deposition
stops is the emergence of history-dependent steady-state distributions.
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In recent years, there has been much activity in the study ah 5 ,
of the statistical properties of the evolution of surfaces when Frialdii g(Vh)*+ 7. 3
granular material is deposited. In the simplest model pro-
posed by Edwards and Wilkinsg&W) [1], the spatial and This equation contains new physics. For example, the non-
temporal fluctuations of the surface are caused by randonnear term appearing in Eq3) above could be clearly re-
deposition followed by the diffusion of material to suppressjated to lateral growth and the formation of overhangs as
gradients in the surface. The surface is described by a heiglescribed in detail in Ref2], where the geometrical moti-
function h(r ,t) above its mean and the EW equation for thevation of that term is given. KPZ is a well-behaved equation

evolution of the surface reads with a resemblance to the Navier-Stokes equation for turbu-
lence. Its steady state is exactly soluble in one dimen&pn
oh but the equation is also tractable in the statistical sense in
— =vV?h+ 7, 1) higher dimensiong4-10, where theory and simulations
gt agree on the power laws of the surface roughness and time
evolution.

where the noise terny represents the local fluctuation in the ~ When the EW and KPZ equations are considered as equa-
rate of deposited material. The correlations of the noise artions for the deposition of dry material, there is, however, a
given by feature of both equations which is clearly unphysical. When
deposition is taking place, arbitrary gradients appear which
of course are washed away by diffusion. If the deposition is
suddenly turned off, steep gradients, defined by the absolute
value of the gradient being larger than the tangent of the
(The functionG must have, of course, a positive Fourier angle of reposey, crumble away but gradients less than
transform) Usually, G is taken to be & function, but to take survive. Indeed this is a familiar fact. After the sandstorm,
into account that the deposited material consists of particlethere are still dunes. Contrary to that, EW and KPZ always
of a finite size,G has to have a finite range corresponding togive a surface that becomes flat as time goes by, once the
that size. deposition ceases.

The EW approach clearly oversimplifies the description of It should be noted that the original EW and KPZ forms
the quite complex way that grains land and settle, and extermay be adequate when the deposited material sticks to the
sions of the equation have appeared in the literature. Particsurface. For such systems, it may be argued that as deposi-
lar attention has been paid to the Kardar-Parisi-Zh@#)Z)  tion stops, the flattening mechanism is suppressed. Namely,
extension 2], where the effect of the existing surface on thethe coupling strengths in front of the terms responsible for
deposition is modeled by flattening vanish as deposition stops. Eventual flattening can

(n(r,m(r' ') =2G(r =r")s(t-t'). 2
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happen only by dislodging the particles sticking to the sur-Therefore, after deposition stops, the surface will keep evolv-
face. This can be affected by other particles impinging on théng not into a flat surface but rather into a surface in which
surface particles or their vicinity. Thus, as deposition stopsthe angles of the slopes are less than the angle of repose.
the surface stops evolving. In fact, this is the physical reasoiNote that in both equations above, the modified terms have
for the identification of the exponents describing metal surthe same symmetriasnder reversing the height or reflecting
faces measured after deposition has stopped, with EW dhe coordinates as the original corresponding terms.
KPZ steady-state exponents that correspond to the situation The equations above describe threshold dynamics that is
of continuous depositiofil1-13. introduced by the use of the saftfunction, f. Other kinds of
In the case of dry nonsticking material, the diffusion con-threshold dynamics encountered in the study of general mi-
stant in the EW equation, for example, does not vanish eveoroscopic models of self-organized criticalifg4] and the
when the deposition stops, as it is mainly governed by gravevolution of river network$15] are also naturally introduced
ity. The implication is thus that if EW or KPZ constituted an by the use of the) function.
adequate description of granular deposition of dry nonstick- We will concentrate in the following on the simplest
ing material, the surfaces generated by deposition wouldnodel described by E@4) and start by discussing the steady
have to flatten after deposition stopped, in obvious contradicstate when the deposition is still on. Consider first the case
tion to our daily experience. where the noise correlations in E¢R) are described by
This paper describes how this situation can be correcte®(r)=D4(r). The Langevin equation above can be replaced
by modifying the EW and KPZ equations, in such a way thatin a standard way by the corresponding Fokker-Planck equa-
the surfaces, resulting after deposition ceases, have gradienisn for the distribution of the height®{h},
bound from above but are not flat. We study the simplest P 5 5
version obtained by modification of the EW equation and 9F _ _o ) 2_
find that in spite of its simplicity, it still leads to nontrivial gt f ar 5h(r){D6h(r) vV LIV A Y h]}P'
and interesting analysis. (6)
In constructing the model, we take into account a number
of considerations: First, we expect the systems to support ahhe steady-state distribution is given by
angle of repose. This implies that the absolute value of the
gradient has to be bound from above by some finite constant P.=N exp{— (v/2D) f drF((Vh)2 - yz)} 7)
but only a long time after the deposition has stopped and the
.su.r.face is static: Furthe_rmore, in the absence of noise, al¥hereN is the normalization constant arf@k)=F’(x). The
initial surface with gradients everywhere below the bound roblem can be viewed as an equilibrium problem described
must be stable. We would also like the equation describing u o€ VI W S quilibrium p scrl
the dynamics of rearrangement to be local and involve th y the “Hamiltonian
same sort of mechanisms leading to the EW or to the KPZ
equations. A basic quantity in the physical description of H:(y/2)fdrF((Vh)2—y2). (8)
surfaces growing under deposition is the current density of
material rearranging itself on the surfag¢&his is a current (This is only a formal resemblance. The “Hamiltonian” does
density in the plain perpendicular to the direction of deposi-not have units of energy nor is temperature involyed.
tion.) In EW and KPZ, the current densifyis proportional to There is no particular difficulty in replacing our genefal
-Vh.  We expect, however, the local current density to van-by its limiting form, the Heavisida} function. F(x) in Eq.
ish whenever(Vh)?2>»2. We thus propose that the way to (8) will be replaced byd(x)x. In the following, we will
incorporate an angle of repose in one of the above equationgus use only thed function, which provides the simplest
is to make the replacemerith— f((Vh)2~9%)Vh, where  possible description. It is worth noting that the steady state in
f(x)=0 for x<0 and tends to 1 for values of larger than the specific case, in which th& function in the current den-
some small positive,. The Edwards-Wilkinson equation is sity is combined with5-function correlations, is entirely
replaced by equivalent to the EW steady state. The reason is that if an
Jh infinitely fine powder lands on a surface without any spatial
—=pV -[f(Vh?- ) Vh]+ 7 (4) correlations, the size of the local gradient must be infinite
t everywhere, so that the argument of théunction is always
positive, resulting in a value of thé function which is al-
N ways 1.[Indeed, it is easily shown that in a linear problem,
ah _ 2 2 2 2 the probability to obtain|Vhj=<+y is proportional to
Pri vV - [f((Vh)>= ) Vh] + f((Vh)? = ) (Vh)? + 7. Y1{(Vh)?), and for an EW s|yst|ert(Vh)2> tends to infinity
(5) with the high “momentum” cutoff, related to the finite size of
the landing particles, and is infinite for thefunction casg.
It is clear that the above equations meet all our requirementsVe consider next the more physical case in which the noise
The equations are local and the current dengisanishes  correlations have a nonvanishing range. Standard combina-
whenever(Vh)2< y2 This implies that in the absence of tion of symmetry considerations with scaling argumdag
deposition(%=0), if everywhere(Vh)?>< 2, the time deriva-  suggests that the model described abffe. (4)] is in the
tive of the height is zero everywhere and the surface is statiziniversality class of the EW model. Namely, the exponents

and the KPZ equation is replaced by
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describing its small momemtay) behavior are identical to tions is infinite as deduced from the Fokker-Planck equation
those of the EW model. (Recall that the symmetry of the for the evolution of the surface distribution functigiq.
various terms in the equation is not changed by the modifi¢10)]. Let us clarify this point. It is clear that in the absence

cation) We have calculated the structure fac&=(hsh_q)  of noise, all height configurationfh;}, such that|Vh|<1y

in order to obtain its explicit dependence on the high “mo-everywhere, remain fixed in time. Each of these height

mentum” cutoff,q.. The full derivation is beyond the scope configurations corresponds trivially to the height distribution

of this paper. We present, however, in. the.next e_qyation thP{ﬁ}:H5(hi—hi). Therefore, contrary to the single steady

structure factor for a very largec. This will exhibit the  state in the case of finite strength of the noise, in the case of

dimensionless small parameter characterizing the model, zero noise there is a whole subspace of distributions spanned

D ¥ (D)2 by the distributionsP,, which is steady. All states in that
S= —[1 + 32712(—) q;“} q? 9 subspace are fixed in time in the absence of noise. The time-
v v dependent distribution function in the absence of noise must

The typical frequencyw,, giving the decay of a disturbance thus tend as time tends to infinity to a state that belongs to

of wave vectorq, seems to give no problem either and to that subspace. The fact that in the absence of noise the steady

scale as in EW. Although we concentrate in the present asstate is not unique is the reason for the dependence of the

ticle only on the modified EW model given by E@) above, long time distribution on initial conditions and on the way

it is quite clear that also in the modified KPZ only front the noise is turned off.

factors will be affected but not the exponents. This follows Consider first the case in which the noise is turned off

from the standard symmetry-scaling argumefit6] men-  adiabatically. What is the distribution that can be expected at

tioned above. Furthermore, for correlations that &fenc-  infinite time? The adiabatic turning off of the deposition is

tion in space{(Vh)?) is infinite for KPZ too. Therefore, the described byD=D(t), a function of time that tends very

arguments given above for EW imply that when the threshslowly to zero. The adiabatic solution of EJ.0) for a time-

old dynamics is described by the haficfunction, the modi-  dependent strength of the noise is

fied system is identical to KPZ in the steady state. Only

introduction of a nonvanishing range in the correlations P(t) = N(t)exg - H/D(1)]. (14)
makes a difference, but this affects only high momenta and ) o
cannot have an effect on the exponents. This means that as time tends to infinity, all the surfaces

We turn our attention now to the regime in which the where somewheréVh|=y tend to have zero probability,
noise is turned off, which was the basic reason to introduc&vhile all the other surfaces tend to have equal probabilities.
our modification of the EW model. First, we find it useful to ~ Consider next the case where the initial distribution is a
introduce the effect of the finite size of the grains by consid-steady-state distribution and the noise is turned off abruptly.
ering a discrete version of Eq&)—(8) on a square lattice Do we expect the final distribution to be that obtained in the

with lattice spacing, adiabatic case? Furthermore, starting from two different
steady-state distributions, do we expect the final distributions

ipzz (1/a2)i 0 .94 P, (10) o be identical? The answer to the first question is actually

at i ah | ah,  ah included in the answer to the second question. Now, the final

S state into which an initial distribution eventually evolves is
where the “Hamiltonian” is given by the projection of that initial state on the space of zero-noise
v _ _ steady states. It is not very probable though that two steady
H==2> a29((Vh)? - Y)((Vh)?- ) (11)  states characterized by different values of the strength of the
2% noise,D;; andD;,, have the same projection on the space of
zero-noise steady states. Yet it might perhaps happen as a
result of some hidden symmetry. To rule that out, it is worth-
while to try and understand the actual physical difference
between final steady states with different initial steady states
corresponding to differerid’s. To answer that, consider first
what happens to a single surface when the deposition is
turned off. The first point to observe is that it follows from
the equation of motion,

and whereVh is the discrete gradient, defined by its compo-
nents along the axes,

ejhl = [h(I+I) = h(i_])]/2a, (12)

] denoting a unit vector in thgdirection.(We use here only
the J-function version. Now consider a steady state charac-
terized by the initial strength of the noisB;, and then re-
duce the strength of the noise . As long asD¢>0, it

does not matter whether the change is adiabatic or abrupt. At ihi =— iH, (15)
very long time, the distribution tends to Jt ahy
P =N; exg— H/Ds], (13)  thatH is a monotonically nonincreasing function of time.

which is the only steady-state distribution with finbe. The | 1S IS general and independenttéfand follows directly by

physical state without deposition is characterizedOgy 0. considering the time de_nvatlve oA. A property that does
The difference between finite and zero deposition is enordepend on the model is that on sites where initidiW
mous. In the latter case, the number of steady-state distribu= |, the value of|Vh| tends toy as time tends to infinity.
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Due to spillover, it may also happen that on some of the sitesery close to it. If, on the other hand, the initiBl is very
where initially [Vh| < v, it will eventually tend toy. In spite  small, the infinite time average will be characterized by
of the last effect, which confuses the issue, it is still clear tham(D) <1. The same is true for a continuous system in which
if we compare two initial surfacefh;} and{ah;} with a>1, the finite size of the landing particles is represented by a high
we will find that the first surface will tend at infinity to a “momentum” cutoff rather than by discreteness of the sys-
surface where the number of sites for Whﬁ”ﬂ:?’ is less tem. '.I'hel full pict_ure is thus th.aF .the _fingl chal roughness
than the number of corresponding sites for the second sufontains mform_atlon a_bout the |r]|t|a}l dlstr|but|on._L.a_rger Ip-
face. The larger the value of the initial strength of the noiseCal roughness in the final state indicates larger initial noise.
the higher is the relative probability of finding initially Putin other words, steeper sand dunes imply deposition by
higher slopes. Thus, if initially the value db is large  Stronger and more turbulent winds.

enough, it will allow that typicallyVh|> y, so that eventu- e would like to thank Y. Kantor for reading the manu-
ally at infinite time ((Vh)?=u(D)7?, where u(D)<1 but  script and for his most helpful comments.
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