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Useful theories for growth of surfaces under random deposition of material have been developed by several
authors. The simplest theory is that introduced by Edwards and Wilkinson(EW), which is linear and soluble.
Its nonlinear generalization by Kardar, Parisi, and Zhang(KPZ) resulted in many subsequent studies. Yet both
EW and KPZ theories contain an unphysical feature. When deposition of material is stopped, both theories
predict that as time tends to infinity, the surface becomes flat. In fact, of course, the final surface is not flat, but
simply has no gradients larger than the gradient related to the angle of repose. We modify the EW and KPZ
theories to accommodate this feature and study the consequences for the simpler system which is a modifica-
tion of the EW equation. In spite of the fact that the equation describing the evolution of the surface is not
linear, we find that the steady state in the presence of noise is not very different in the long-wavelength limit
from that of the linear EW equation. The situation is quite different from that of EW when deposition stops.
Initially there is still some rearrangement of the surface, but that stops as everywhere on the surface the
gradient is less than that related to the angle of repose. The most interesting feature observed after deposition
stops is the emergence of history-dependent steady-state distributions.
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In recent years, there has been much activity in the study
of the statistical properties of the evolution of surfaces when
granular material is deposited. In the simplest model pro-
posed by Edwards and Wilkinson(EW) [1], the spatial and
temporal fluctuations of the surface are caused by random
deposition followed by the diffusion of material to suppress
gradients in the surface. The surface is described by a height
function hsr ,td above its mean and the EW equation for the
evolution of the surface reads

] h

] t
= n¹2h + h, s1d

where the noise termh represents the local fluctuation in the
rate of deposited material. The correlations of the noise are
given by

khsr ,tdhsr 8,t8dl = 2Gsur − r 8ddst − t8d. s2d

(The function G must have, of course, a positive Fourier
transform.) Usually,G is taken to be ad function, but to take
into account that the deposited material consists of particles
of a finite size,G has to have a finite range corresponding to
that size.

The EW approach clearly oversimplifies the description of
the quite complex way that grains land and settle, and exten-
sions of the equation have appeared in the literature. Particu-
lar attention has been paid to the Kardar-Parisi-Zhang(KPZ)
extension[2], where the effect of the existing surface on the
deposition is modeled by

] h

] t
= n¹2h + gs¹hd2 + h . s3d

This equation contains new physics. For example, the non-
linear term appearing in Eq.(3) above could be clearly re-
lated to lateral growth and the formation of overhangs as
described in detail in Ref.[2], where the geometrical moti-
vation of that term is given. KPZ is a well-behaved equation
with a resemblance to the Navier-Stokes equation for turbu-
lence. Its steady state is exactly soluble in one dimension[3]
but the equation is also tractable in the statistical sense in
higher dimensions[4–10], where theory and simulations
agree on the power laws of the surface roughness and time
evolution.

When the EW and KPZ equations are considered as equa-
tions for the deposition of dry material, there is, however, a
feature of both equations which is clearly unphysical. When
deposition is taking place, arbitrary gradients appear which
of course are washed away by diffusion. If the deposition is
suddenly turned off, steep gradients, defined by the absolute
value of the gradient being larger than the tangent of the
angle of repose,g, crumble away but gradients less thang
survive. Indeed this is a familiar fact. After the sandstorm,
there are still dunes. Contrary to that, EW and KPZ always
give a surface that becomes flat as time goes by, once the
deposition ceases.

It should be noted that the original EW and KPZ forms
may be adequate when the deposited material sticks to the
surface. For such systems, it may be argued that as deposi-
tion stops, the flattening mechanism is suppressed. Namely,
the coupling strengths in front of the terms responsible for
flattening vanish as deposition stops. Eventual flattening can
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happen only by dislodging the particles sticking to the sur-
face. This can be affected by other particles impinging on the
surface particles or their vicinity. Thus, as deposition stops,
the surface stops evolving. In fact, this is the physical reason
for the identification of the exponents describing metal sur-
faces measured after deposition has stopped, with EW or
KPZ steady-state exponents that correspond to the situation
of continuous deposition[11–13].

In the case of dry nonsticking material, the diffusion con-
stant in the EW equation, for example, does not vanish even
when the deposition stops, as it is mainly governed by grav-
ity. The implication is thus that if EW or KPZ constituted an
adequate description of granular deposition of dry nonstick-
ing material, the surfaces generated by deposition would
have to flatten after deposition stopped, in obvious contradic-
tion to our daily experience.

This paper describes how this situation can be corrected
by modifying the EW and KPZ equations, in such a way that
the surfaces, resulting after deposition ceases, have gradients
bound from above but are not flat. We study the simplest
version obtained by modification of the EW equation and
find that in spite of its simplicity, it still leads to nontrivial
and interesting analysis.

In constructing the model, we take into account a number
of considerations: First, we expect the systems to support an
angle of repose. This implies that the absolute value of the
gradient has to be bound from above by some finite constant
but only a long time after the deposition has stopped and the
surface is static. Furthermore, in the absence of noise, any
initial surface with gradients everywhere below the bound
must be stable. We would also like the equation describing
the dynamics of rearrangement to be local and involve the
same sort of mechanisms leading to the EW or to the KPZ
equations. A basic quantity in the physical description of
surfaces growing under deposition is the current density of
material rearranging itself on the surface.(This is a current
density in the plain perpendicular to the direction of deposi-
tion.) In EW and KPZ, the current densityj is proportional to
-¹h. We expect, however, the local current density to van-
ish whenevers¹hd2.g2. We thus propose that the way to
incorporate an angle of repose in one of the above equations
is to make the replacement¹h→ f(s¹hd2−g2)¹h, where
fsxd=0 for xø0 and tends to 1 for values ofx larger than
some small positivex0. The Edwards-Wilkinson equation is
replaced by

] h

] t
= n ¹ · ff(s¹hd2 − g2) ¹ hg + h s4d

and the KPZ equation is replaced by

] h

] t
= n ¹ · ff(s¹hd2 − g2) ¹ hg + f2(s¹hd2 − g2)s¹hd2 + h.

s5d

It is clear that the above equations meet all our requirements.
The equations are local and the current densityj vanishes
whenevers¹hd2øg2. This implies that in the absence of
depositionsh=0d, if everywheres¹hd2øg2, the time deriva-
tive of the height is zero everywhere and the surface is static.

Therefore, after deposition stops, the surface will keep evolv-
ing not into a flat surface but rather into a surface in which
the angles of the slopes are less than the angle of repose.
Note that in both equations above, the modified terms have
the same symmetriesunder reversing the height or reflecting
the coordinates as the original corresponding terms.

The equations above describe threshold dynamics that is
introduced by the use of the softq function, f. Other kinds of
threshold dynamics encountered in the study of general mi-
croscopic models of self-organized criticality[14] and the
evolution of river networks[15] are also naturally introduced
by the use of theq function.

We will concentrate in the following on the simplest
model described by Eq.(4) and start by discussing the steady
state when the deposition is still on. Consider first the case
where the noise correlations in Eq.(2) are described by
Gsr d=Ddsr d. The Langevin equation above can be replaced
in a standard way by the corresponding Fokker-Planck equa-
tion for the distribution of the heights,Phhj,

] P

] t
=E dr

d

dhsr dHD
d

dhsr d
− n ¹ · ff(s¹hd2 − g2) ¹ hgJP.

s6d

The steady-state distribution is given by

Ps = N expH− sn/2Dd E drF(s¹hd2 − g2)J , s7d

whereN is the normalization constant andfsxd=F8sxd. The
problem can be viewed as an equilibrium problem described
by the “Hamiltonian”

H = sn/2d E drF(s¹hd2 − g2). s8d

(This is only a formal resemblance. The “Hamiltonian” does
not have units of energy nor is temperature involved.)

There is no particular difficulty in replacing our generalf
by its limiting form, the Heavisideq function. Fsxd in Eq.
(8) will be replaced byqsxdx. In the following, we will
thus use only theq function, which provides the simplest
possible description. It is worth noting that the steady state in
the specific case, in which theq function in the current den-
sity is combined withd-function correlations, is entirely
equivalent to the EW steady state. The reason is that if an
infinitely fine powder lands on a surface without any spatial
correlations, the size of the local gradient must be infinite
everywhere, so that the argument of theq function is always
positive, resulting in a value of theq function which is al-
ways 1.[Indeed, it is easily shown that in a linear problem,
the probability to obtain u¹huøg is proportional to
g2/ ks¹hd2l, and for an EW systemks¹hd2l tends to infinity
with the high “momentum” cutoff, related to the finite size of
the landing particles, and is infinite for thed-function case.]
We consider next the more physical case in which the noise
correlations have a nonvanishing range. Standard combina-
tion of symmetry considerations with scaling arguments[16]
suggests that the model described above[Eq. (4)] is in the
universality class of the EW model. Namely, the exponents

M. SCHWARTZ AND S. F. EDWARDS PHYSICAL REVIEW E70, 061602(2004)

061602-2



describing its small momemtasqd behavior are identical to
those of the EW model. (Recall that the symmetry of the
various terms in the equation is not changed by the modifi-
cation.) We have calculated the structure factorSq=khqh−ql
in order to obtain its explicit dependence on the high “mo-
mentum” cutoff,qc. The full derivation is beyond the scope
of this paper. We present, however, in the next equation the
structure factor for a very largeqc. This will exhibit the
dimensionless small parameter characterizing the model,

Sq =
D

n
F1 +

g4

32p2SD

n
D−2

qc
−4Gq−2. s9d

The typical frequency,vq, giving the decay of a disturbance
of wave vectorq, seems to give no problem either and to
scale as in EW. Although we concentrate in the present ar-
ticle only on the modified EW model given by Eq.(4) above,
it is quite clear that also in the modified KPZ only front
factors will be affected but not the exponents. This follows
from the standard symmetry-scaling arguments[16] men-
tioned above. Furthermore, for correlations that ared func-
tion in space,ks¹hd2l is infinite for KPZ too. Therefore, the
arguments given above for EW imply that when the thresh-
old dynamics is described by the hardq function, the modi-
fied system is identical to KPZ in the steady state. Only
introduction of a nonvanishing range in the correlations
makes a difference, but this affects only high momenta and
cannot have an effect on the exponents.

We turn our attention now to the regime in which the
noise is turned off, which was the basic reason to introduce
our modification of the EW model. First, we find it useful to
introduce the effect of the finite size of the grains by consid-
ering a discrete version of Eqs.(6)–(8) on a square lattice
with lattice spacinga,

]

] t
P = o

i

s1/a2d
]

] hi
HD

]

] hi
+

]

] hi
HJP, s10d

where the “Hamiltonian” is given by

H =
n

2o
i

a2q(s¹̃hid2 − g2)(s¹̃hid2 − g2) s11d

and where¹̃h is the discrete gradient, defined by its compo-
nents along the axes,

¹̃ jhi = fhsi+ ĵd − hsi− ĵdg/2a, s12d

ĵ denoting a unit vector in thej direction.(We use here only
theq-function version.) Now consider a steady state charac-
terized by the initial strength of the noise,Di, and then re-
duce the strength of the noise toDf. As long asDf .0, it
does not matter whether the change is adiabatic or abrupt. At
very long time, the distribution tends to

Pf = Nf expf− H/Dfg, s13d

which is the only steady-state distribution with finiteDf. The
physical state without deposition is characterized byDf =0.
The difference between finite and zero deposition is enor-
mous. In the latter case, the number of steady-state distribu-

tions is infinite as deduced from the Fokker-Planck equation
for the evolution of the surface distribution function[Eq.
(10)]. Let us clarify this point. It is clear that in the absence

of noise, all height configurationshhij, such thatu¹̃huøg
everywhere, remain fixed in time. Each of these height
configurations corresponds trivially to the height distribution
Phhj=pdshi −hid. Therefore, contrary to the single steady
state in the case of finite strength of the noise, in the case of
zero noise there is a whole subspace of distributions spanned
by the distributionsPhhj, which is steady. All states in that
subspace are fixed in time in the absence of noise. The time-
dependent distribution function in the absence of noise must
thus tend as time tends to infinity to a state that belongs to
that subspace. The fact that in the absence of noise the steady
state is not unique is the reason for the dependence of the
long time distribution on initial conditions and on the way
the noise is turned off.

Consider first the case in which the noise is turned off
adiabatically. What is the distribution that can be expected at
infinite time? The adiabatic turning off of the deposition is
described byD=Dstd, a function of time that tends very
slowly to zero. The adiabatic solution of Eq.(10) for a time-
dependent strength of the noise is

Pstd = Nstdexpf− H/Dstdg. s14d

This means that as time tends to infinity, all the surfaces

where somewhereu¹̃huùg tend to have zero probability,
while all the other surfaces tend to have equal probabilities.

Consider next the case where the initial distribution is a
steady-state distribution and the noise is turned off abruptly.
Do we expect the final distribution to be that obtained in the
adiabatic case? Furthermore, starting from two different
steady-state distributions, do we expect the final distributions
to be identical? The answer to the first question is actually
included in the answer to the second question. Now, the final
state into which an initial distribution eventually evolves is
the projection of that initial state on the space of zero-noise
steady states. It is not very probable though that two steady
states characterized by different values of the strength of the
noise,Di1 andDi2, have the same projection on the space of
zero-noise steady states. Yet it might perhaps happen as a
result of some hidden symmetry. To rule that out, it is worth-
while to try and understand the actual physical difference
between final steady states with different initial steady states
corresponding to differentD’s. To answer that, consider first
what happens to a single surface when the deposition is
turned off. The first point to observe is that it follows from
the equation of motion,

]

] t
hi = −

]

] hi
H, s15d

that H is a monotonically nonincreasing function of time.
This is general and independent ofH and follows directly by
considering the time derivative ofH. A property that does

depend on the model is that on sites where initiallyu¹̃h

ùgu, the value ofu¹̃hu tends tog as time tends to infinity.
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Due to spillover, it may also happen that on some of the sites

where initially u¹̃hu,g, it will eventually tend tog. In spite
of the last effect, which confuses the issue, it is still clear that
if we compare two initial surfaceshhij andhahij with a.1,
we will find that the first surface will tend at infinity to a

surface where the number of sites for whichu¹̃hu=g is less
than the number of corresponding sites for the second sur-
face. The larger the value of the initial strength of the noise,
the higher is the relative probability of finding initially
higher slopes. Thus, if initially the value ofD is large

enough, it will allow that typicallyu¹̃hu@g, so that eventu-

ally at infinite time ks¹̃hd2l=msDdg2, where msDd,1 but

very close to it. If, on the other hand, the initialD is very
small, the infinite time average will be characterized by
msDd!1. The same is true for a continuous system in which
the finite size of the landing particles is represented by a high
“momentum” cutoff rather than by discreteness of the sys-
tem. The full picture is thus that the final local roughness
contains information about the initial distribution. Larger lo-
cal roughness in the final state indicates larger initial noise.
Put in other words, steeper sand dunes imply deposition by
stronger and more turbulent winds.
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